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Lecture 1



Overall purpose
Describe the theory of degenerating variations of Hodge
structure on the punctured disk:
▶ Focus on the analytic behavior of a polarized VHS.
▶ Get a conceptual understanding of the linear algebra

objects that show up in the limit.
▶ Simplify the original proofs (by Schmid).



(Complex) Hodge structures
Let V be a complex vector space.
A Hodge structure of weight n on V is a decomposition

V =
⊕

p+q=n
V p,q.

A polarization is a hermitian form Q : V ⊗C V → C such that:
1. The decomposition is orthogonal with respect to Q.
2. (−1)qQ is positive definite on the subspace V p,q.

It gives rise to a positive definite hermitian inner product

⟨u, v⟩ =
∑

p+q=n
(−1)qQ(up,q, vp,q).



(Complex) Hodge structures

Let X be a compact Kähler manifold. Each

Hn(X ,C) =
⊕

p+q=n
Hp,q(X )

is a Hodge structure of weight n. In this case, ⟨α, β⟩ is the
inner product on harmonic forms (from the Kähler metric).

As long as we have a polarization, we can describe a Hodge
structure by its Hodge filtration

F pV =
⊕
i≥p

V i ,n−i

because V p,q = F pV ∩ (F p+1V )⊥.



Variations of Hodge structure
Let E be smooth vector bundle on a complex manifold X ,
together with a flat connection d : A0(E ) → A1(E ).
A variation of Hodge structure (VHS) of weight n on E is a
decomposition into smooth subbundles

E =
⊕

p+q=n
E p,q,

such that the flat connection d takes A0(E p,q) into

A1,0(E p,q) ⊕ A1,0(E p−1,q+1) ⊕ A0,1(E p,q) ⊕ A0,1(E p+1,q−1).

Accordingly, d = ∂ + θ + ∂̄ + θ∗; the operator θ is usually
called the Higgs field.



Variations of Hodge structure
More familiar holomorphic description: d = d ′ + d ′′

▶ d ′′ makes E into a holomorphic vector bundle E .
▶ d ′′ preserves the Hodge bundles

F p = E p,q ⊕ E p+1,q−1 ⊕ · · ·

and so they give holomorphic subbundles F pE .
▶ d ′ defines a flat connection ∇ : E → Ω1

X ⊗ E .
▶ Griffiths transversality ∇(F pE) ⊆ Ω1

X ⊗ F p−1E .
▶ ∂̄ makes E p,q into a holomorphic vector bundle Ep,q, and

one has Ep,q ∼= F pE/F p+1E .
▶ The Higgs field is the induced OX -linear morphism

Ep,q → Ω1
X ⊗ Ep−1,q+1.



Variations of Hodge structure
A polarization of a VHS E is a hermitian pairing

Q : A0(E ) ⊗A0 A0(E ) → A0

with the following three properties:
1. Q is flat: dQ(u, v) = Q(du, v) + Q(u, dv)
2. The decomposition is orthogonal.
3. The expression

h(u, v) =
∑

p+q=k
(−1)qQ(up,q, vp,q)

defines a positive definite hermitian metric on E .
The metric h is called the Hodge metric.



Plan for the lectures
Study VHS on ∆∗ =

{
t ∈ C

∣∣∣ 0 < |t| < 1
}
, especially the

behavior of the metric and the Hodge structures near 0 ∈ ∆.
1. Examples
2. Asymptotic behavior of the Hodge metric
3. Asymptotic behavior of the Hodge structures
4. Convergence results

Today: Describe a class of examples where we can understand
everything concretely.
▶ Build intuition
▶ Models for the general case



The simplest example
We want to construct a VHS on the punctured disk.

∆∗ =
{

t ∈ C
∣∣∣ 0 < |t| < 1

}
=

We work on the universal covering space exp: H → ∆∗.

H =
{

z ∈ C
∣∣∣ Re z < 0

}
=



The simplest example
Consider the trivial bundle E = H × C2; the flat connection d
is the usual derivative. The hermitian pairing is constant:

Q(e1, e1) = Q(e2, e2) = 0, Q(e1, e2) = 1

At the point z ∈ H, we use the Hodge structure

E 1,0|z = C(e1 − ze2), E 0,1|z = C(e1 + z̄e2).

This Hodge structure is polarized by Q:

Q(e1 − ze2, e1 + z̄e2) = −z + z = 0
(−1)0Q(e1 − ze2, e1 − ze2) = −z − z̄ = 2|Re z | > 0
(−1)1Q(e1 + z̄e2, e1 + z̄e2) = 2|Re z | > 0



The simplest example
Consider the trivial bundle E = H × C2; the flat connection d
is the usual derivative. The hermitian pairing is constant:

Q(e1, e1) = Q(e2, e2) = 0, Q(e1, e2) = 1

At the point z ∈ H, we use the Hodge structure

E 1,0|z = C(e1 − ze2), E 0,1|z = C(e1 + z̄e2).

It is easy to compute the Hodge decomposition

e1 = z̄
z + z̄ (e1 − ze2) + z

z + z̄ (e1 + z̄e2)

e2 = −1
z + z̄ (e1 − ze2) + 1

z + z̄ (e1 + z̄e2)



The simplest example
Let’s check that we get a VHS. A smooth section of E 1,0 looks
like f · (e1 − ze2), with f smooth.The derivative is

df ⊗ (e1 − ze2) − f dz ⊗ e2

which can be rewritten as(
∂f
∂z dz + f dz

z + z̄

)
⊗(e1−ze2)+

∂f
∂z̄ d z̄⊗(e1−ze2)−

f dz
z + z̄ ⊗(e1+z̄e2).

This is in A1,0(E 1,0) ⊕ A0,1(E 1,0) ⊕ A1,0(E 0,1).



The simplest example
We can descend this example to ∆∗. Recall that t = ez .
The deck transformation z 7→ z + 2πi changes the Hodge
structures as follows:

E p,q|z+2πi = T · E p,q|z ,

where T is the matrix

T = e2πiN =
(

1 0
−2πi 1

)
, N = −

(
0 0
1 0

)
.

The quotient of H × C2 by the relation

(z , v) ∼ (z + 2πi , Tv)

is a vector bundle on ∆∗, with a polarized VHS of weight 1.



The simplest example
In the standard basis, the Hodge metric is given by(

|x | + y 2|x |−1 −iy |x |−1

iy |x |−1 |x |−1

)
(z = x + iy).

The metric grows or decays like powers of |x | = − log|t|.

The behavior is controlled by the matrix
(

1 0
0 −1

)
.



Representations of sl2(C)
We can get other examples from representations of sl2(C); the
one above comes from the standard representation.
The Lie algebra sl2(C) is spanned by the matrices

H =
(

1 0
0 −1

)
, X =

(
0 0
1 0

)
, Y =

(
0 1
0 0

)
.

The relations are [H, X] = 2X, [H, Y] = −2Y, [X, Y] = H.
Every finite-dimensional representation V decomposes as

V =
⊕
k∈Z

Vk , Vk = Ek(H)

into a sum of weight spaces. They satisfy X(Vk) ⊆ Vk+2 and
Y(Vk) ⊆ Vk−2.



Representations of sl2(C)
The weight spaces are symmetric around k = 0:

Xk : V−k
∼=−→ Vk and Yk : Vk

∼=−→ V−k .

This can also be seen using the Weil element

w =
(

0 1
−1 0

)
∈ SL2(C).

It has the property that

wHw−1 = −H, wXw−1 = Y, and wYw−1 = X.

Moreover, w induces an isomorphism between Vk and V−k .



Representations of sl2(C)
The irreducible representations are Sm = Symm(C2), m ∈ N:
▶ S0 = C is the trivial representation
▶ S1 = C2 is the standard representation

All finite-dimensional representations decompose into
irreducible representations, and Schur’s lemma gives

V ∼=
⊕
m∈N

Sm ⊗ HomC(Sm, V )sl2(C).



sl2-Hodge structures
An sl2-Hodge structure of weight n on a C-vector space V is a
representation of sl2(C) on V such that:

1. Each weight space Vk = Ek(H) has a Hodge structure of
weight n + k .

2. Both X : Vk → Vk+2(1) and Y : Vk → Vk−2(−1) are
morphisms of Hodge structure.

Concretely, X(V p,q
k ) ⊆ V p+1,q+1

k+2 and Y(V p,q
k ) ⊆ V p−1,q−1

k−2 .

The typical example is the cohomology of an n-dimensional
compact Kähler manifold (X , ω). Here Vk = Hn+k(X ,C), and

X = 2πi Lω and Y = (2πi)−1Λω

are the Lefschetz operator and its adjoint.



sl2-Hodge structures
A polarization of an sl2-Hodge structure V is a hermitian form
Q : V ⊗C V → C such that:

1. Q is nondegenerate and H† = −H, X† = X, Y† = Y.
2. The hermitian form Q(−, w−) polarizes the Hodge

structure of weight n + k on each weight space Vk .
Here the Weil element w functions as a linear algebra version
of the Hodge ∗-operator.
In fact, one checks that w : Vk → V−k(−k) is an isomorphism
of Hodge structures (of weight n + k).



sl2-Hodge structures
What does the polarization condition mean concretely?
On the primitive subspace

V−k ∩ ker Y = ker
(
Xk+1 : V−k → Vk+2

)
,

the Weil element acts as w(v) = 1
k!X

kv .
Then Q is a polarization exactly if Q(−, Xk−) polarizes the
Hodge structure on each primitive subspace V−k ∩ ker Y.

In the Kähler example, this amounts to the Hodge-Riemann
bilinear relations.



sl2-Hodge structures
Each irreducible representation Sm has an (essentially unique)
sl2-Hodge structure of weight m:

1. Take S0 = C0,0 with the hermitian pairing (u, v) 7→ uv̄ .
2. For the standard representation on S1 = C2, we declare

that e1 has Hodge type (1, 1), and e2 has type (0, 0).
Our usual pairing

Q(e1, e1) = Q(e2, e2) = 0, Q(e1, e2) = 1

is a polarization because

(−1)1Q(e1, we1) = −Q(e1, −e2) = 1
(−1)0Q(e2, we2) = Q(e2, e1) = 1



sl2-Hodge structures
Each irreducible representation Sm has an (essentially unique)
polarized sl2-Hodge structure of weight m:

3. For m ≥ 2, the symmetric power Sm = Symm(C2) is
spanned by em

1 , em−1
1 e2, . . . , em

2 , and these vectors have
Hodge type (m, m), (m − 1, m − 1), . . . , (0, 0).

An arbitrary (polarized) sl2-Hodge structure of weight n then
decomposes as

V ∼=
⊕
m∈N

Sm ⊗ HomC(Sm, V )sl2(C).

Each vector space HomC(Sm, V )sl2(C) inherits a (polarized)
Hodge structure of weight n − m.



The associated Hodge structure

Lemma
Let V be an sl2-Hodge structure of weight n, and Q a
polarization. Consider the filtration

F p =
⊕
i≥p,j

V i ,j
i+j−n.

Then the following is true:
1. The filtration eYF is the Hodge filtration of a Hodge

structure of weight n, polarized by Q.
2. With respect to the inner product, H∗ = H and X∗ = Y.



The associated Hodge structure
Because of the decomposition

V ∼=
⊕
m∈N

Sm ⊗ HomC(Sm, V )sl2(C)

and by functoriality, we only need to check this for S1.

For S1 = C2, we get F 1 = Ce1, and so eYF 1 = C(e1 + e2). So
we get the Hodge structure

C2 = C(e1 + e2) ⊕ C(e1 − e2)

from our earlier example (at z = −1). As e1 and e2 form an
orthonormal basis for the inner product, H∗ = H and X∗ = Y.



The associated Hodge structure
From the Hodge structure on V , we get a Hodge structure

End(V ) =
⊕
j∈Z

End(V )j,−j

of weight 0 on End(V ). Here

End(V )j,−j =
{

A ∈ End(V )
∣∣∣ A(V p,q) ⊆ V p+j,q−j

}
.

Write the Hodge decomposition of A ∈ End(V ) as A = ∑
j Aj .

Lemma
In the Hodge structure on End(V ), one has

Y = Y−1+Y0+Y1, X = −Y−1+Y0−Y1, H = −2Y−1+2Y1.

Exercise: Check this in the case of S1.



The associated variation of Hodge structure

Each polarized sl2-Hodge structure determines a polarized
VHS of the same weight on the punctured disk.

Let V be an sl2-Hodge structure of weight n.
▶ Consider the trivial bundle E = H × V , with flat

connection d given by differentiation.
▶ A polarization Q defines a flat hermitian pairing on E .

We know that eYF is the Hodge filtration of a polarized
Hodge structure on V . At the point z ∈ H, we now use the
polarized Hodge structure whose Hodge filtration is

Φ(z) = e−zYF .



The associated variation of Hodge structure
Why does this work?
▶ Set z = x + iy , with x < 0.
▶ From [H, Y] = −2Y, we get

e−zY = e−iyYe|x |Y = e−iyYe− 1
2 log|x |HeYe 1

2 log|x |H

▶ The operator e 1
2 log|x |H preserves the filtration F , hence

e−zYF = e−iyYe− 1
2 log|x |H · eYF .

▶ Both operators belong to the orthogonal group
G = O(V , Q), because H† = −H and Y† = Y.

▶ Therefore they map polarized Hodge structures to
polarized Hodge structures.



The associated variation of Hodge structure
Let us check that we get a VHS. Let

V =
⊕

p+q=n
V p,q

be the Hodge structure with Hodge filtration eYF .
The Hodge bundle E p,q is then the image of

H × V p,q → H × V ,

(z , v) 7→
(
z , e−iyYe− 1

2 log|x |Hv
)
.

Any smooth section of E p,q therefore looks like

e−iyYe− 1
2 log|x |H · f ,

where f : H → V p,q is smooth.



The associated variation of Hodge structure
Set g = e−iyYe− 1

2 log|x |H ∈ G . Then

d(g · f ) = g
(

− i
|x |

Yf ⊗ dy + 1
2|x |

Hf ⊗ dx + df
)

Substituting Y = Y−1 + Y0 + Y1 and H = −2Y−1 + 2Y1 and
simplifying, we find that

d = ∂ + θ + ∂̄ + θ∗

has the correct shape. For example:

∂ = g ·
(

∂

∂z − 1
2|x |

Y0

)
· g−1 ⊗ dz ∈ A1,0(E p,q)

θ = g ·
(

− 1
|x |

Y−1

)
· g−1 ⊗ dz ∈ A1,0(E p−1,q+1)



The associated variation of Hodge structure
From the formula Φ(z) = e−zYF , we see that

Φ(z + 2πi) = T · Φ(z),

where T = e−2πiY. Note that this operator again has the form
T = e2πiN , with N = −Y nilpotent.
If we take the quotient of H× V by (z , v) ∼ (z + 2πi , Tv), we
again get a flat bundle on the punctured disk.
Our example therefore descends to a polarized variation of
Hodge structure of weight n on the punctured disk.



The associated variation of Hodge structure
From the fact that H∗ = H and X∗ = Y, we can derive the
following formula for the Hodge metric:

h(u, v) =
〈
e 1

2 log|x |He iyYu, e 1
2 log|x |He iyYv

〉
=
〈
e−iyXe log|x |He iyYu, v

〉
Here the brackets stand for the inner product in the Hodge
structure at z = −1. After expanding this, we get

h(v , v) =
∞∑

k=0

y 2k

(k!)2 |x |ℓ−2k∥Ykv∥2 = |x |ℓ∥v∥2 + · · · ,

for a vector v ∈ Vℓ. The growth or decay of the Hodge norm
is therefore again controlled by the operator H.



Lecture 2



References
I should have said this last time:
▶ Wilfried Schmid, Variation of Hodge Structure: The

Singularities of the Period Mapping (Inventiones, 1973)
▶ Claude Sabbah and Christian Schnell, Degenerating

complex variations of Hodge structure in dimension one
The first paper is the original source.
In the paper with Claude, we prove the same results, but for
complex VHS, and from a more analytic point of view.



Plan for today
Consider a variation of Hodge structure

E =
⊕

p+q=n
E p,q

on the punctured disk ∆∗, with polarization Q.
Recall the definition of the Hodge metric

h(u, v) =
∑

p+q=n
(−1)qQ(up,q, vp,q).

Goal: Understand the behavior of h near 0 ∈ ∆.



Multivalued flat sections
We need a fixed reference frame in order to compare the inner
products on different fibers of the vector bundle E .
We use the vector space V of multivalued flat sections.
Recall the universal covering space

exp: H =
{

z ∈ C
∣∣∣ Re z < 0

}
→ ∆∗, z 7→ ez .

Let V be the space of flat sections of exp∗(E , d). Then

exp∗ E ∼= H × V .

We define the monodromy transformation T ∈ GL(V ) by

(Tv)(z) = v(z − 2πi).

Then E is the quotient of H × V by (z , v) ∼ (z + 2πi , Tv).



Multivalued flat sections
The polarization gives us a hermitian form Q : V ⊗C V → C
that is nondegenerate and satisfies

Q(Tu, Tv) = Q(u, v) or equivalently T †T = id.

We have the Jordan decomposition

T = Ts · Tu = Ts · e2πiN ,

with Ts ∈ GL(V ) semisimple and N ∈ End(V ) nilpotent.
We note that Ts and N commute and satisfy

T †
s Ts = id and N† = N .



Hodge norm estimates
For each nonzero v ∈ V , we get a smooth function

h(v , v) : H → (0, ∞)

from the Hodge metric. We want to understand its behavior
as |Re z | → ∞ (which is the same as t = ez → 0).



Hodge norm estimates
The Hodge norm always behaves as in the examples from last
time: if v ∈ V is a nonzero multivalued flat section, then

h(v , v) ∼ |Re z |k

The exponent is controlled by the “weight filtration” of N .

Hodge norm estimates
There is an increasing filtration W• = W•V such that

v ∈ Wk \ Wk−1 ⇐⇒ h(v , v) ∼ |Re z |k

as long as Im z remains bounded. The filtration W• can be
computed from the nilpotent operator N .



Weight filtration
Any nilpotent endomorphism N ∈ End(V ) determines an
increasing filtration W• on V , called the weight filtration.

For a Jordan block, say of size 4 × 4:

N =


0
1 0

1 0
1 0

 and


e1 ∈ W3

e2 ∈ W1

e3 ∈ W−1

e4 ∈ W−3

If V is a representation of sl2(C), then the weight filtration of
the nilpotent operator N = ±Y is

Wk =
⊕
ℓ≤k

Eℓ(H).



Weight filtration
In general, the weight filtration of N ∈ End(V ) is

Wk =
∑
j∈N

N j
(
ker Nk+2j+1

)
.

It is uniquely determined by two conditions:
1. N(W•) ⊆ W•−2

2. Nk : grW
k → grW

−k is an isomorphism for k ≥ 1.
Here grW

k = Wk/Wk−1.



Flat sections have bounded Hodge norm
For example, consider a flat section of (E , d) on ∆∗.
▶ Its pullback to H gives us v ∈ V with Tv = v .
▶ Tv = v implies that Nv = 0.
▶ We have ker N ⊆ W0.
▶ The Hodge norm estimates imply that h(v , v) remains

bounded as |Re z | → ∞.
The conclusion is that the Hodge norm of a flat section is
bounded near 0 ∈ ∆.
This is the most important case of the Hodge norm estimates.
We will actually prove this directly!



Outline of the proof
The rest of the lecture is about the proof.

1. Computations with harmonic bundles, universal bound for
the Higgs field θ.

2. Special case: boundedness for flat sections
3. General case: comparison with examples



Harmonic bundles
Let (E , d) be a flat bundle on ∆∗. Given a polarized VHS

E =
⊕

p+q=n
E p,q,

one has a decomposition d = ∂ + θ + ∂̄ + θ∗, where

∂ : A0(E p,q) → A1,0(E p,q)
∂̄ : A0(E p,q) → A0,1(E p,q)
θ : A0(E p,q) → A1,0(E p−1,q+1)

θ∗ : A0(E p,q) → A0,1(E p+1,q−1)

The operator θ is called the Higgs field.



Harmonic bundles
By decomposing d2 = 0, we get the following identities:

∂2 = θ2 = ∂̄2 = (θ∗)2 = 0
∂θ + θ∂ = ∂̄θ∗ + θ∗∂̄ = 0
∂̄θ + θ∂̄ = ∂θ∗ + θ∗∂ = 0
∂∂̄ + ∂̄∂ + θθ∗ + θ∗θ = 0

Since dQ(u, v) = Q(du, v) + Q(u, dv) and different E p,q are
orthogonal with respect to Q, we also get:
▶ ∂ + ∂̄ is a metric connection for h.
▶ θ∗ is the adjoint of θ relative to h.

This means that (E , d , h) is a harmonic bundle (Simpson).



Harmonic bundles
Let’s do some computations with these identities.

Lemma
Let 0 ̸= v ∈ V and define φ = log h(v , v) : H → R.

1. φ is subharmonic, meaning that ∆φ ≥ 0.

2. We have
∣∣∣∣∣∂φ

∂z

∣∣∣∣∣ =
∣∣∣∣∣∂φ

∂z̄

∣∣∣∣∣ ≤ 2hEnd(E)(θ∂/∂z , θ∂/∂z)1/2.

Note that θ∂/∂z is a smooth section of the bundle End(E ).
It maps the subbundle E p,q into E p−1,q+1, and in particular, it
is nilpotent.



Harmonic bundles
Let’s prove (2), to show the idea. We work on H.
▶ ∂ + ∂̄ is a metric connection, and so

∂h(v , v) = h(∂v , v) + h(v , ∂̄v).

▶ From dv = 0, we get ∂v = −θv and ∂̄v = −θ∗v , hence

∂h(v , v) = −h(θv , v) − h(v , θ∗v) = −2h(θv , v)
∂

∂z h(v , v) = −2h(θ∂/∂zv , v).

▶ The Cauchy-Schwarz inequality then gives∣∣∣∣∣ ∂

∂z h(v , v)
∣∣∣∣∣ ≤ 2hEnd(E)(θ∂/∂z , θ∂/∂z)1/2 · h(v , v).



Simpson’s basic estimate
The crucial point is that one can bound the norm of θ∂/∂z ,
and therefore the derivative of the function φ = log h(v , v).

Theorem
Let r = rk E = dim V , and define C0 = 1

2

√(
r+1

3

)
. Then

hEnd(E)(θ∂/∂z , θ∂/∂z) ≤ C 2
0

|Re z |2
for all z ∈ H.

The amazing thing is that this only depends on the rank of E .



Simpson’s basic estimate
Here is an outline of the proof. Set A = θ∂/∂z and A∗ = θ∗

∂/∂z̄ .
Step 1. Another calculation with harmonic bundles gives

∂2

∂z∂z̄ log hEnd(E)(A, A) ≥
hEnd(E)

(
[A∗, A], [A∗, A]

)
hEnd(E)(A, A) .

Here [A∗, A] is the commutator (as a section of End(E )).
Step 2. If A is a nilpotent endomorphism of V , and A∗ is its
adjoint with respect to an inner product, then

∥[A∗, A]∥2 ≥ 1
2C 2

0
∥A∥4.

Applied pointwise, this gives

∂2

∂z∂z̄ log hEnd(E)(A, A) ≥ 1
2C 2

0
hEnd(E)(A, A).



Simpson’s basic estimate
Step 3. Recall Ahlfors’ lemma: For smooth f : H → (0, ∞),

∂2

∂z∂z̄ log f ≥ f
2C =⇒ f ≤ C

|Re z |2
.

Step 4. Since we know that

∂2

∂z∂z̄ log hEnd(E)(A, A) ≥ 1
2C 2

0
hEnd(E)(A, A),

we get the desired inequality

hEnd(E)(A, A) ≤ C 2
0

|Re z |2
.



Simpson’s basic estimate
Conclusion: If 0 ̸= v ∈ V is a multivalued flat section, then

φ = log h(v , v) : H → R

is subharmonic and ∣∣∣∣∣∂φ

∂z

∣∣∣∣∣ =
∣∣∣∣∣∂φ

∂z̄

∣∣∣∣∣ ≤ 2C0

|Re z |
.



The monodromy theorem
As an exercise, let’s prove the monodromy theorem:

If λ ∈ C is an eigenvalue of T , then |λ| = 1.
▶ Let v ∈ V be a nonzero eigenvector with Tv = λv .
▶ Then v(z − 2πi) = λv(z), and so φ = log h(v , v) satisfies

log|λ|2 = φ(z − 2πi) − φ(z) =
∫ 1

0

d
dy φ(z − 2πiy) dy

▶ From the bound on the derivatives of φ, we get
∣∣∣log|λ|2

∣∣∣ ≤ 4π · 2C0

|Re z |
.

▶ Letting |Re z | → ∞, we conclude that |λ| = 1.



Boundedness of flat sections
Next, let’s show that flat sections are bounded.

Lemma
Let v ∈ V be a multivalued flat section with Tv = v. Then
the function h(v , v) remains bounded as |Re z | → ∞.

Consider the function φ = log h(v , v) on H. We know:
1. φ(z + 2πi) = φ(z)
2. φ is subharmonic: ∆φ ≥ 0
3. The first derivatives of φ satisfy∣∣∣∣∣∂φ

∂z

∣∣∣∣∣ =
∣∣∣∣∣∂φ

∂z̄

∣∣∣∣∣ ≤ 2C0

|Re z |
.

It follows that φ is bounded from above as |Re z | → ∞.



Boundedness of flat sections
Here is a gist of the proof, in a toy case:

Let f : (−∞, 0) → R be a smooth function such that

f ′′(x) ≥ 0 and |f ′(x)| ≤ C
|x |

for some C > 0. Then f is bounded from above as x → −∞.

▶ f ′′ ≥ 0 means that f ′ is increasing.
▶ Since lim

x→−∞
f ′(x) = 0, it follows that f ′(x) ≥ 0.

▶ Therefore f is itself increasing, and so

f (x) ≤ f (−1) for x ≤ −1.



Comparison theorem

Comparison theorem
Let E1 and E2 be two polarized VHS on the punctured disk.
If (E1, d1) ∼= (E2, d2) as flat bundles, then the Hodge metrics
h1 and h2 are mutually bounded, up to a constant, as t → 0.

This is an easy consequence:
▶ The bundle H = Hom(E1, E2) inherits a polarized VHS.
▶ An isomorphism f : E1 → E2 of flat bundles gives a

single-valued flat section of H such that Tf = f .
▶ By the lemma, hH(f , f ) stays bounded as t → 0.
▶ Since h2

(
f (v), f (v)

)
≤ hH(f , f ) · h1(v , v), we get one

inequality; the other follows by symmetry.



Proof of the Hodge norm estimates
Let me remind you about the main theorem:

Hodge norm estimates
There is an increasing filtration W• = W•V such that

v ∈ Wk \ Wk−1 ⇐⇒ h(v , v) ∼ |Re z |k

as long as Im z remains bounded. Moreover, the filtration W•
is the weight filtration of the nilpotent operator N .

Recall that T = Ts · e2πiN is the Jordan decomposition of the
monodromy transformation T ∈ GL(V ).



Proof of the Hodge norm estimates
Now it is fairly easy to prove the Hodge norm estimates:
▶ Let E be a polarized VHS on the punctured disk.
▶ By the comparison theorem, all we need is another VHS

on (E , d) whose Hodge metric has the desired behavior.
▶ By putting T into Jordan canonical form, we can assume

that T is a single Jordan block; equivalently, V is an
irreducible representation of sl2(C).

▶ Last time, we showed that each irreducible representation
has an sl2-Hodge structure. We also saw that the Hodge
norm of the associated VHS has the correct behavior.



Lecture 3



Plan for today
Let E be a polarized VHS on ∆∗. Recall some notation:
▶ V is the space of multivalued flat sections.
▶ T = Ts · e2πiN ∈ GL(V ) is the monodromy operator.
▶ W• is the weight filtration of N .

Yesterday, we proved that, as |Re z | → ∞, one has

v ∈ Wk \ Wk−1 ⇐⇒ h(v , v) ∼ |Re z |k

(as long as Im z stays in a bounded interval).
Goal: Understand the behavior of the Hodge structures.
The non-uniform behavior of the metric prevents the existence
of a limit. We will solve this problem by “rescaling”.



The period domain
In order to compare different Hodge structures on V , we need
to review spaces of polarized Hodge structures.
Fix V and a hermitian form Q : V ⊗C V → C.
The period domain D parametrizes Hodge structures (with
fixed Hodge numbers) on V that are polarized by Q:

o ∈ D ⇐⇒ V =
⊕

p+q=n
V p,q

o

We denote the resulting inner product by ⟨u, v⟩o.



The period domain
The real Lie group G = O(V , Q) acts transitively on D:

g · o ∈ D ⇐⇒ V =
⊕

p+q=n
V p,q

g ·o =
⊕

p+q=n
g(V p,q

o ).

The two inner products are related by the formula

⟨gu, gv⟩g ·o = ⟨u, v⟩o.

The Lie algebra of the group G is

g =
{

A ∈ End(V )
∣∣∣ A† = −A

}
,

where A† means the adjoint with respect to Q.



The period domain
Since a polarized Hodge structure is determined by its Hodge
filtration, D embeds as an open set into the compact dual Ď,
the space of decreasing filtrations F • (with dim F p fixed).
The complex Lie group GL(V ) acts transitively on Ď, and Ď is
a projective complex manifold. D ⊆ Ď is open.
Since the Lie algebra of GL(V ) is just End(V ), the tangent
space to Ď at a point o ∈ D is therefore

ToĎ ∼= End(V )/F 0 End(V ),

where F 0 End(V ) =
{

A ∈ End(V )
∣∣∣ A(F •) ⊆ F •

}
.



The period mapping
From the polarized VHS on E on ∆∗, we get a polarized VHS
on exp∗ E ∼= H × V . This gives us the period mapping

Φ: H → D

The Hodge structure at the point z ∈ H is

V =
⊕

p+q=n
V p,q

Φ(z),

and the inner product is ⟨u, v⟩Φ(z).
The period mapping is holomorphic, basically because the
Hodge filtration is preserved by the operator d ′′ = ∂̄ + θ∗.



The period mapping
Recall that T ∈ G . In fact, Φ(z + 2πi) = T · Φ(z).
Why? For each z ∈ H, we have an isomorphism

ϕz : V → Et=ez , v 7→ v(z).

Since (Tv)(z + 2πi) = v(z), the following diagram commutes:

V

Et=ez

V

T

ϕz

ϕz+2πi

The way the period mapping is constructed, we get

T −1Φp(z + 2πi) = T −1ϕ−1
z+2πi

(
F pEt

)
= ϕ−1

z

(
F pEt

)
= Φp(z).



Rescaling the period mapping
Using our new notation, we can write the Hodge metric as

h(v , v)(z) = ∥v∥2
Φ(z).

We want to understand what happens to the Hodge structures
Φ(z) ∈ D in the limit as |Re z | → ∞.
They will not converge in general, because of the non-uniform
behavior of the Hodge metric:

v ∈ Wk \ Wk−1 ⇐⇒ ∥v∥2
Φ(z) ∼ |Re z |k



Rescaling the period mapping
We should fix this problem by rescaling: chose a complement

Wk = Vk ⊕ Wk−1,

and then multiply by |Re z |−k/2 on the subspace Vk .
The complement is needed because of the implied constant:

∥v∥2
Φ(z) ∼ |Re z |k

is an abbreviation for

C(v)−1|Re z |k ≤ ∥v∥2
Φ(z) ≤ C(v)|Re z |k

but the constant C(v) goes to zero as v approaches Wk−1.



Rescaling the period mapping
To do this nicely, we pick H ∈ End(V ) such that:

1. H is semisimple with eigenvalues in Z
2. Wk = Ek(H) ⊕ Wk−1 for every k ∈ Z.
3. [H , N] = −2N (recall that N(Wk) ⊆ Wk−2)
4. H† = −H , meaning that H ∈ g.
5. [H , Ts ] = 0

Many such splittings exist, just by linear algebra.
The first three lines imply that we get a representation

ρ : sl2(C) → End(V ), ρ(H) = H , ρ(Y) = −N .

The weight spaces Vk = Ek(H) give us Wk = Vk ⊕ Wk−1.



Rescaling the period mapping
Now we can rescale. If v ∈ Ek(H), then ∥v∥2

Φ(z) ∼ |Re z |k and

|Re z |−k/2v = e− 1
2 log|Re z|Hv

Since H ∈ g, we have e− 1
2 log|Re z|H ∈ G . Therefore

∥v∥2
e

1
2 log|Re z|HΦ(z)

=
∥∥∥e− 1

2 log|Re z|Hv
∥∥∥2

Φ(z)
= |Re z |−k∥v∥2

Φ(z)

stays bounded as |Re z | → ∞.
But we still have the restriction that Im z needs to lie in a
bounded interval. We can get rid of that as follows.



Rescaling the period mapping
The problem is caused by the fact that Φ(z + 2πi) = TΦ(z).
All eigenvalues of T satisfy |λ| = 1. Taking their logarithms,
we can find a semisimple operator S ∈ End(V ), with real
eigenvalues in an interval of length < 1, such that

T = Tse2πiN = e2πi(S+N).

Then S† = S, and so e−i Im z(S+N) ∈ G . The expression

e−i Im z(S+N)Φ(z) ∈ D

is now invariant under the substitution z 7→ z + 2πi .



Rescaling the period mapping
Combining both operations, we arrive at

Φ̂(z) = e 1
2 log|Re z|He−i Im z(S+N)︸ ︷︷ ︸

in the real Lie group G

Φ(z) ∈ D.

This is invariant under z 7→ z + 2πi , and for every v ∈ V ,

∥v∥2
Φ̂(z) =

∥∥∥e i Im z(S+N)e 1
2 log|Re z|Hv

∥∥∥2

Φ(z)

remains bounded as |Re z | → ∞, uniformly in Im z .
We call the (real analytic) mapping

Φ̂ : H → D, Φ̂(z) = e 1
2 log|Re z|He−i Im z(S+N)Φ(z),

the rescaled period mapping. It depends on H and S.



Convergence of the rescaled period mapping
The main result is that the rescaled period mapping converges.

Theorem
The limit lim

|Re z|→∞
Φ̂(z) exists in the period domain D.

This shows that the Hodge metric really controls everything:
▶ The metric has a simple (but non-uniform) behavior:

different power of |Re z |.
▶ After we rescale in order to eliminate the different powers,

both the metric and the Hodge structures converge.



Convergence of the rescaled period mapping
The main result is that the rescaled period mapping converges.

Theorem
The limit lim

|Re z|→∞
Φ̂(z) exists in the period domain D.

There is some additional information. The filtration

F = eN lim
|Re z|→∞

Φ̂(z) ∈ Ď

satisfies Ts(F •) ⊆ F •, H(F •) ⊆ F •, and N(F •) ⊆ F •−1.



Convergence of the rescaled period mapping

Recall that an sl2-Hodge structure

V =
⊕
k∈Z

Vk

has an associated VHS, with N = −Y, and period mapping

Φ(z) = e−iyYe− 1
2 log|x |H(eYF ) (z = x + iy)

In this case,

Φ̂(z) = e 1
2 log|x |He−iyNΦ(z) = eYF = e−NF

is a constant Hodge structure. In particular, F = eNΦ̂(z) is
the Hodge filtration in the sl2-Hodge structure.



The limiting sl2-Hodge structure
We will prove the convergence next time (together with the
“nilpotent orbit theorem”, an important intermediate result).
In the rest of today’s lecture, I want to deduce from the
convergence the existence of a limiting sl2-Hodge structure.
From the splitting H ∈ End(V ), we get a representation

ρ : sl2(C) → End(V ), ρ(H) = H , ρ(Y) = −N .

We set Vk = Ek(H), so that

V =
⊕
k∈Z

Vk .

We will upgrade this to a polarized sl2-Hodge structure.



sl2-Hodge structures (review)
Recall that an sl2-Hodge structure of weight n on a C-vector
space V is a representation of sl2(C) on V such that:

1. Each weight space Vk = Ek(H) has a Hodge structure of
weight n + k .

2. Both X : Vk → Vk+2(1) and Y : Vk → Vk−2(−1) are
morphisms of Hodge structure.

Recall that a polarization of an sl2-Hodge structure V is a
hermitian form Q : V ⊗C V → C such that:

1. Q is nondegenerate and H† = −H, X† = X, Y† = Y.
2. The hermitian form Q(−, w−) polarizes the Hodge

structure of weight n + k on each weight space Vk .



The limiting sl2-Hodge structure
The pairing Q : V ⊗C V → C has the property that Y† = Y
and H† = −H (and therefore also X† = X).
The theorem gives us a filtration F ∈ Ď such that

eYF = lim
|Re z|→∞

Φ̂(z) ∈ D

and such that

Y(F •) ⊆ F •−1, H(F •) ⊆ F •, Ts(F •) ⊆ F •.

This is enough for a polarized sl2-Hodge structure.



The limiting sl2-Hodge structure

Theorem
The filtration F is the Hodge filtration of an sl2-Hodge
structure of weight n, polarized by Q.
(And Ts is an endomorphism of the sl2-Hodge structure.)

Concretely, this means that each weight space Vk has a Hodge
structure of weight n + k , whose Hodge filtration is F ∩ Vk .
This is a formal consequence of the fact that

1. eYF ∈ D
2. Y(F •) ⊆ F •−1.
3. H(F •) ⊆ F •

Let me try to explain the main point. Warning: Linear algebra!



The limiting sl2-Hodge structure
Recall that we have a decomposition

V ∼=
⊕
m∈N

Sm ⊗ HomC(Sm, V )sl2(C).

We know from the first lecture that Sm = Symm(C2) has a
canonical polarized sl2-Hodge structure of weight m.
It is therefore enough to show that

HomC(Sm, V )sl2(C)

has a polarized Hodge structure of weight n − m.
By functoriality, we only need to consider V sl2(C), the space of
sl2-invariants.



The subspace of invariants

Proposition
Under the conditions above, the subspace

V sl2(C) =
{

v ∈ V
∣∣∣ Yv = Hv = 0

}
= V0 ∩ ker Y

has a Hodge structure of weight n, polarized by Q, whose
Hodge filtration is induced by the filtration F .

From eYF ∈ D, we get a polarized Hodge structure

V =
⊕

p+q=n
V p,q.

We will prove that V sl2(C) is a sub-Hodge structure.
This is enough because eYF ∩ V sl2(C) = F ∩ V sl2(C).



The subspace of invariants
From eYF ∈ D, we get a polarized Hodge structure

V =
⊕

p+q=n
V p,q.

We denote the resulting norm by the symbol ∥v∥.
We write the Hodge decomposition of v ∈ V in the form

v =
∑

p
vp, vp ∈ V p,n−p,



The subspace of invariants
As usual, we have an induced Hodge structure of weight 0 on

End(V ) =
⊕
j∈Z

End(V )j,−j .

We write the Hodge decomposition of A ∈ End(V ) in the form

A =
∑

j
Aj , Aj ∈ End(V )j,−j

Concretely, this means that Aj(V p,q) ⊆ V p+j,q−j .
Recall that A† is the adjoint with respect to the nondegenerate
pairing Q. If A ∈ End(V )j,−j , then A† ∈ End(V )−j,j .



The subspace of invariants
The idea is to analyze the Hodge decomposition of Y and H.

Lemma
1. Y = Y−1 + Y0 + Y1 and Y†

0 = Y0 and Y†
−1 = Y1

2. H = −2Y−1 + H0 + 2Y1 and H†
0 = −H0

3. 2Y0 = 4[Y−1, Y1] + [Y0, H0]

▶ We have Y† = Y, and therefore Y†
j = Y−j .

▶ Since Y(eYF •) ⊆ eYF •−1, we get Yj = 0 for j ≤ −2.
▶ Therefore also Yj = 0 for j ≥ 2, and so

Y = Y−1 + Y0 + Y1.

▶ We also have Y†
0 = Y0 and Y†

−1 = Y1.



The subspace of invariants
The idea is to analyze the Hodge decomposition of Y and H.

Lemma
1. Y = Y−1 + Y0 + Y1 and Y†

0 = Y0 and Y†
−1 = Y1

2. H = −2Y−1 + H0 + 2Y1 and H†
0 = −H0

3. 2Y0 = 4[Y−1, Y1] + [Y0, H0]

▶ The second line follows from H(F •) ⊆ F •.
▶ The third line follows from 2Y = [Y, H].



The subspace of invariants
Now we can prove that V sl2(C) is a sub-Hodge structure of V .
Take any vector v ∈ V sl2(C), so that Yv = Hv = 0. Write

v = vp + vp+1 + · · · , vp ̸= 0.

By induction, it is enough to show that vp ∈ V sl2(C).
Goal: Prove that Yvp = Hvp = 0.
From Yv = 0 and Y = Y−1 + Y0 + Y1, we get

Y−1vp = 0 and Y−1vp+1 + Y0vp = 0.

From Hv = 0 and H = −2Y−1 + H0 + 2Y1, we get

−2Y−1vp = 0 and − 2Y−1vp+1 + H0vp = 0.



The subspace of invariants
So Y−1vp = 0 and H0vp = −2Y0vp.
We can exploit the fact that Y†

0 = Y0 but H†
0 = −H0:

−Q(2Y0vp, vp) = Q(vp, −2Y0vp) = Q(vp, H0vp)
= Q(−H0vp, vp) = Q(2Y0vp, vp)

Therefore Q(2Y0vp, vp) = 0.
Recall the relation 2Y0 = 4[Y−1, Y1] + [Y0, H0]. We get

0 = Q(2Y0vp, vp)
= 4Q(Y−1Y1vp, vp) + Q(Y0H0vp, vp) − Q(H0Y0vp, vp)
= 4Q(Y1vp, Y1vp) + Q(H0vp, Y0vp) + Q(Y0vp, H0vp)
= 4Q(Y1vp, Y1vp) − 4Q(Y0vp, Y0vp).



The subspace of invariants
So Q(Y1vp, Y1vp) − Q(Y0vp, Y0vp) = 0.
Now we use the polarization to prove that Yvp = Hvp = 0.
We have v ∈ V p,q, hence Y1vp ∈ V p+1,q−1, and so

∥Y1vp∥2 = (−1)q−1Q(Y1vp, Y1vp).

On the other hand, Y0vp ∈ V p,q, and so

∥Y0vp∥2 = (−1)qQ(Y0vp, Y0vp).

Putting both things together, we get

∥Y1vp∥2 + ∥Y0vp∥2 = 0,

and therefore Y1vp = Y0vp = 0, hence also H0vp = 0.



The subspace of invariants
This shows that V sl2(C) is indeed a sub-Hodge structure of V .

Proposition
Under the conditions above, the subspace

V sl2(C) =
{

v ∈ V
∣∣∣ Yv = Hv = 0

}
= V0 ∩ ker Y

has a Hodge structure of weight n, polarized by Q, whose
Hodge filtration is induced by the filtration F .

By functoriality, this is enough to conclude that

V ∼=
⊕
m∈N

Sm ⊗ HomC(Sm, V )sl2(C).

has a polarized sl2-Hodge structure of weight n.



Lecture 4



Plan for today
Last time, we introduced the rescaled period mapping

Φ̂ : H → D, Φ̂(z) = e 1
2 log|Re z|He−i Im z(S+N)︸ ︷︷ ︸

in the real group G

Φ(z).

This is invariant under z 7→ z + 2πi , and for every v ∈ V ,

∥v∥2
Φ̂(z) =

∥∥∥e i Im z(S+N)e 1
2 log|Re z|Hv

∥∥∥2

Φ(z)

remains bounded as |Re z | → ∞, uniformly in Im z .

Theorem
The limit lim

|Re z|→∞
Φ̂(z) exists in the period domain D.

Today I want to outline the proof of this central result.



Plan for today
Recall that we had to make two choices:

1. H is a splitting for the weight filtration W•. It is
semisimple with eigenvalues in Z. This was to get

Wk = Ek(H) ⊕ Wk−1.

2. S ∈ End(V ) is a logarithm for Ts . It is semisimple with
eigenvalues in an interval of length < 1. This was to get

T = e2πi(S+N).



The untwisted period mapping
Unlike Φ: H → D, the rescaled period mapping Φ̂ : H → D is
no longer holomorphic. The key intermediate step in the proof
is a convergence result for a holomorphic mapping.
Recall that Φ(z + 2πi) = TΦ(z) = e2πi(S+N)Φ(z). Therefore

e−z(S+N)Φ(z) ∈ Ď

is invariant under z 7→ z + 2πi . This expression is holomorphic
in z , but no longer lies in D because e−z(S+N) ̸∈ G .
We call the holomorphic mapping

Ψ: ∆∗ → Ď, Ψ(ez) = e−z(S+N)Φ(z),

the untwisted period mapping.



The nilpotent orbit theorem
The key step in the proof is the following holomorphic result.

Nilpotent orbit theorem
The untwisted period mapping extends holomorphically to

Ψ: ∆ → Ď.

The limit Ψ(0) ∈ Ď satisfies (S + N)Ψ•(0) ⊆ Ψ•−1(0).

The proof uses some actual analysis.
1. Explain how to deduce the convergence of Φ̂.
2. Outline the proof of the nilpotent orbit theorem.



Convergence of the rescaled period mapping
How does this help with the convergence proof? Let’s rewrite

Φ̂(z) = e 1
2 log|Re z|He−i Im z(S+N)Φ(z)

in terms of Ψ(ez) = e−z(S+N)Φ(z). We get

Φ̂(z) = e 1
2 log|Re z|He−i Im z(S+N)Φ(z)

= e 1
2 log|Re z|He−|Re z|(S+N)Ψ(ez)

= e 1
2 log|Re z|He−|Re z|Ne−|Re z|SΨ(ez)

= e−N · e 1
2 log|Re z|He−|Re z|SΨ(ez).

In the last step, we used [H , N] = −2N for the identity

e− 1
2 log|Re z|He−Ne 1

2 log|Re z|H = e−|Re z|N .



Convergence of the rescaled period mapping
The conclusion is that

Φ̂(z) = e−N · e 1
2 log|Re z|He−|Re z|SΨ(ez).

We can prove the convergence in Ď as follows:
1. By the nilpotent orbit theorem, Ψ(ez) converges to Ψ(0)

at a rate of |ez | = e−|Re z| (because it is holomorphic).
2. The operator e−|Re z|S is of order e−(1−ε)|Re z|, because the

eigenvalues of S lie in an interval of length < 1.
3. The operator e 1

2 log|Re z|H is of order |Re z |m, because the
eigenvalues of H are integers.

This is enough to conclude that lim
|Re z|→∞

Φ̂(z) ∈ Ď exists.



Convergence of the rescaled period mapping
We now use the following basic lemma.

Lemma
Let f : N → D be a sequence of points in D such that:

1. The limit lim
m→∞

f (m) exists in Ď.
2. There is a constant C > 0 such that

C−1∥v∥2 ≤ ∥v∥2
f (m) ≤ C∥v∥2

for every v ∈ V (where ∥−∥ is a fixed norm on V ).
Then lim

m→∞
f (m) belongs to D.

This holds for Φ̂(z) because we rescaled the Hodge metric.



Filtrations and limits
Last time, we defined

F = eN lim
|Re z|→∞

Φ̂(z) = lim
|Re z|→∞

e 1
2 log|Re z|He−|Re z|SΨ(0).

This is the Hodge filtration of the limiting sl2-Hodge structure.
How is this filtration F ∈ Ď related to Ψ(0) ∈ Ď?



Filtrations and limits

Lemma
Let S ∈ End(V ) be semisimple with real eigenvalues. The limit

FS = lim
x→∞

exSF ∈ Ď

exists for any F ∈ Ď, and one has S(F •
S ) ⊆ F •

S , which means
that FS is compatible with the eigenspace decomposition of S.

Concretely, FS is obtained from F as follows:

F p
S ∩ Eα(S) ∼=

F p ∩⊕β≤α Eβ(S)
F p ∩⊕β<α Eβ(S)

In other words, we have to project F to the subquotients of
the filtration by increasing eigenvalues of S.



Filtrations and limits
This process is used twice in the computation of

F = lim
|Re z|→∞

e 1
2 log|Re z|He−|Re z|SΨ(0).

Since Ts = e2πiS , the first limit produces a new filtration

Flim = lim
|Re z|→∞

e−|Re z|SΨ(0)

with the property that Ts(F •
lim) ⊆ F •

lim. This is usually called
the limiting Hodge filtration.
In the second step, we get F from Flim by projecting to the
subquotients of the weight filtration W• (which is the filtration
by increasing eigenvalues of H). It satisfies H(F •) ⊆ F •.



Filtrations and limits
Last time, we showed that the filtration F is the Hodge
filtration of an sl2-Hodge structure. In particular, each weight
space Ek(H) has a Hodge structure of weight n + k .
But F is obtained from Flim by projecting to the subquotients
of the weight filtration W•. Because of the isomorphism

Ek(H) ∼= grW
k = Wk/Wk−1,

we see that each grW
k has a Hodge structure of weight n + k ,

whose Hodge filtration is induced by Flim.
In other words, we get a mixed Hodge structure on V whose
Hodge filtration is Flim and whose weight filtration is W•−n.
Without any choices, the sl2-Hodge structure lives on⊕

k∈Z
grW

k



Proof of the nilpotent orbit theorem
In the remaining time, I would like to describe the proof of the
nilpotent orbit theorem.

Nilpotent orbit theorem
The untwisted period mapping extends holomorphically to

Ψ: ∆ → Ď.

The limit Ψ(0) ∈ Ď satisfies (S + N)Ψ•(0) ⊆ Ψ•−1(0).

Important ingredients:
1. Curvature of the Hodge metric.
2. L2-estimates for the ∂̄-equation.
3. Differential equations with regular singular points.



Curvature of the Hodge metric
Let (E , d) be a flat bundle on ∆∗. Given a polarized VHS

E =
⊕

p+q=n
E p,q,

one has a decomposition d = ∂ + θ + ∂̄ + θ∗. These operators
satisfy many identities, and so (E , d , h) is a harmonic bundle.
The identities we are going to need today are:

1. ∂ + ∂̄ is a metric connection for h
2. θ∗ is the adjoint of θ relative to h
3. ∂∂̄ + ∂̄∂ + θθ∗ + θ∗θ = 0
4. ∂̄θ + θ∂̄ = 0
5. ∂2 = ∂̄2 = 0



Curvature of the Hodge metric
The operator ∂̄ : A0(E p,q) → A0,1(E p,q) makes E p,q into a
holomorphic vector bundle. Since ∂ + ∂̄ is a metric connection,
we can compute the curvature of the Hodge metric:

h(Θu, u) = h
(
(∂∂̄ + ∂̄∂)u, u

)
= −h

(
(θθ∗ + θ∗θ)u, u

)
= h(θu, θu) + h(θ∗u, θ∗u)

for any smooth section u ∈ A0(E p,q), and therefore

h(Θ∂/∂t∧∂/∂ t̄u, u) = h(θ∂/∂tu, θ∂/∂tu) − h(θ∗
∂/∂ t̄u, θ∗

∂/∂ t̄u).

The curvature tensor is neither positive nor negative.
We can fix this problem as follows. If we multiply h by e−φ,
then the curvature tensor changes to Θ + ∂∂̄φ.



Curvature of the Hodge metric
From the basic estimate for the Higgs field, we get

h(θ∗
∂/∂ t̄u, θ∗

∂/∂ t̄u) ≤ C 2
0

|t|2(− log|t|)2 h(u, u),

Now if we set e−φ = |t|a(− log|t|)b, then ∂∂̄φ = b/4
|t|2(− log|t|)2 .

The conclusion is that a metric of the form

h · |t|a(− log|t|)b

will have positive curvature for b ≫ 0 (Cornalba-Griffiths).
This is the crucial point that makes everything work.



Hörmander’s L2-estimates in one dimension
Let E be a smooth vector bundle on a domain Ω ⊆ C, with
holomorphic structure d ′′ : A0(E ) → A0,1(E ). Given
f ∈ A0(Ω, E ), we want to solve the ∂̄-equation d ′′

∂/∂ t̄u = f .
Suppose E has a hermitian metric h with positive curvature:
there is a positive function ρ such that

h
(
Θ∂/∂t∧∂/∂ t̄ α, α

)
≥ ρ2h(α, α) for all α ∈ A0

c(Ω, E ).

Under these assumptions, there is a solution u ∈ A0(Ω, E ) to
the ∂̄-equation d ′′

∂/∂ t̄u = f that satisfies the L2-estimate
∫

Ω
h(u, u)dµ ≤

∫
Ω

1
ρ2 h(f , f )dµ,

provided that the right-hand side is finite.



Proof of the nilpotent orbit theorem
We return to our problem: we want to show that

Ψ(ez) = e−z(S+N)Φ(z)

extends holomorphically across 0 ∈ ∆.
We have an induced VHS of weight 0 on the bundle

End(E ) =
⊕

j
End(E )j,−j .

Viewed as a section of End(E )−1,1, with holomorphic structure
[∂̄, −], the Higgs field θ∂/∂t is holomorphic:

[∂̄, θ] = ∂̄θ + θ∂̄ = 0

But viewed as a section of End(E ), with holomorphic structure
[d ′′, −], it is not holomorphic:

[d ′′, θ] = [∂̄ + θ∗, θ] = [θ∗, θ] ̸= 0.



Proof of the nilpotent orbit theorem
Step 1. We lift tθ∂/∂t to a holomorphic section ϑ of the
Hodge bundle F −1 End(E ), such that

ϑ ≡ tθ∂/∂t mod F 0 End(E ).

Hörmander’s L2-estimates let us do this in such a way that∫
∆∗

hEnd(E)(ϑ, ϑ)|t|a(− log|t|)bdµ < +∞.

This works because f = [d ′′
∂/∂ t̄ , tθ∂/∂t ] = t[θ∗

∂/∂ t̄ , θ∂/∂t ] satisfies

h(f , f ) ≤ 2|t|2
(

C 2
0

|t|2(− log|t|)2

)2

= 2C 4
0

|t|2(− log|t|)4 ,

by the basic estimate for the Higgs field from Lecture 2.



Proof of the nilpotent orbit theorem
Step 2. Pulling back to H, we get a holomorphic mapping

ϑ : H → End(V )

with ϑ(z + 2πi) = Tϑ(z)T −1. Since t = ez , this satisfies

ϑ ≡ θ∂/∂z mod F 0 End(V )Φ(z).

Untwisting gives us a holomorphic mapping

B : ∆∗ → End(V ), B(ez) = e−z(S+N)ϑ(z)ez(S+N).

For suitable a > −2 and b ≫ 0, the L2-estimate implies that
B is square integrable around the origin.
Therefore B extends holomorphically to ∆.



Proof of the nilpotent orbit theorem
Step 3. The tangent space to Ď at the point Φ(z) ∈ D is

TΦ(z)Ď ∼= End(V )/F 0 End(V )Φ(z).

The derivative of the period mapping Φ: H → Ď is

θ∂/∂z mod F 0 End(V )Φ(z).

Therefore the derivative of z 7→ Ψ(ez) = e−z(S+N)Φ(z) is

e−z(S+N)θ∂/∂zez(S+N) − (S + N)
≡ B(ez) − (S + N) mod F 0 End(V )Ψ(ez ).

The operator on the right-hand side is holomorphic!



Proof of the nilpotent orbit theorem
Step 4. Let g : H → GL(V ) be the unique (holomorphic)
solution of the initial value problem

g ′(z) =
(
B(ez) − (S + N)

)
· g(z), g(−1) = id .

Then the derivative of g(z)−1Ψ(ez) vanishes, and so the
mapping g(z)−1Ψ(ez) is constant. This means that

Ψ(ez) = g(z) · Ψ(e−1).



Proof of the nilpotent orbit theorem
Step 5. The differential equation

g ′(z) =
(
B(ez) − (S + N)

)
· g(z)

has a regular singular point at t = 0. By the basic theory of
such equations, the solution has the form

g(z) = M(ez) · eAz

with M : ∆∗ → GL(V ) meromorphic and A ∈ End(V ).
Since Ψ(ez) is single-valued, we get

Ψ(t) = M(t) · Ψ(e−1),

and because Ď is projective, it follows that Ψ extends.



Proof of the nilpotent orbit theorem
The rest of the proof is about deriving good estimates for the
rate of convergence, using the maximum principle.
This is important for extending the theory to several variables.



Thank you!


